MEDIUM VOLTAGE SYSTEMS

ELECTRIC LEAGUE OF THE PACIFIC NORTHWEST

Course Objectives

Overview of Medium Voltage Applications to learn more about MV basics, MV architecture and systems, and MV equipment. Presented as a comparison of Low Voltage Systems basics, including standards, architecture, systems, and equipment.

Course Objectives

On May 15, the Electric League is presenting a follow-up to the MV topic. Please make notes about what you want to learn about as the presentation progresses.

Questions that we cannot answer without going more in-depth than we have time to discuss will be considered for the agenda of the next session as will your requests for a deeper understanding.

ANSI C84.1-2020

Electric Power Systems and Equipment - Voltage Ratings (60 Hz) Descriptions of nominal voltage ratings from 100V to 1,200kV.

The 'Voltage Class' of 'Medium Voltage' begins at 1,000V and runs up thru 69,000V in North America.

The 'Voltage Class' of 'Low Voltage' begins at 100V and runs up to 600V in North America.

VOLTAGE CLASS	Nominal System Voltage Nominal Utilization				Voltage Range A (Note b)			Voltage Range B (Note b)		
	2202	(Note a) Voltage			Maximum	Minimu		Maximum	Minimum	
	2-wire	3-wire	4-wire	2-wire 3-wire 4-wire	Utilization and Service Voltage (Note c)	Service Voltage	Voltage	Utilization and Service Voltage	Service Voltage	Voltage
Low Voltage				100000000	1 20001	Single-Phase Systems	2 ACC -	N 2000 1	31-532	
	120	120/240		115 115/230	126 126/252	114 114/228	108 108/216	127 127/254	110 110/220	104 104/208
		1222225				Three-Phase Systems	1 1. 17 1. 20 March			1
		240 480 600	2089/120 (Note d) 240/120 4809/277	200 230/115 230 460Y/266 460 575	2189/126 252/126 252 5049/291 504 630	1977/114 228/114 228 4567/263 456 570	1879/168 216/108 216 4329/249 432 540	2209/127 254/127 254 508/293 508 635	191Y/110 (Note 1) 220/110 220 440Y/254 440 550	1809/10 (Note 1) 208/104 208 4169/24 416 520
		(Note e)		-3535	(Note e)		12.68	(Note e)	233	
Medium Voltage		2400 4160 4000 6900 13800 23000 34500	41607/2400 83207/4400 120007/8930 1347097/7200 135097/7520 135097/7520 228607/13200 245007/15920		2520 4370/2520 4370/2520 4370/2520 6040 7240 8730/95040 13960/97290 13960/97560 21820/97560 21820/97560 21820/9715120 21820/9715120 26199/9715120 36230	2340 4050/1/2340 4050 4730 8110/1/4680 12160/1/7628 12460/1/7786 13460/1/778 13460 20080/11700 20280/11700 22280/11700 22280/11700 22280/11700 22280/11700 22280/11700 23540/119420 33540/119420	2160 3740/v2160 3740 4320 6210 (Note f) 12420 (Note f)	2540 4400//2540 4400 7266 8800//6580 13200//7580 13300//7580 13300//7580 14520//7580 22000//12700 22300//12700 22400//15240 36510/21080 36510	2280 3950/(2280 4550 5560 5560 11460/(8560 11460/(8560 11550/(8540) 1350/(8540) 1350/(7570 13150 21750/(13560 2155	2080 36007/20 3600 4100 5940 (Note f) 11880 (Note f)
		45000 69000			Voltage (Note g) 48300 72500	Note 1: Many 220-volt n utilization voltage would Range B minimum volt	dnot be less than 1	87 volts. Caution sh	ould be exercised	in applying t
High Votage		115000 138000 161000 230000			121000 145000 169000 242000					
Extra-High Voltage		345000 400000 500000 765000			362000 420000 550000 800000					
Ultra-High Voltage		1100000			1200000					

Standards

What is 'Medium Voltage'

ANSI C84.1-2020

'Medium Voltage' Industrial facilities, substations, large commercial buildings, campus distribution, large industrial loads, utilities

'Low Voltage' Residential, commercial buildings, small industrial loads, IT systems

VOLTAGE	N	ominal Syste	we Voltage	Nominal	T
CLASS		Utilization	I		
0000				Voltage	ŀ
		(Note	a)	(Note h)	L
	2-wire	3-wire	4-wire	2-wire	ł
	5.000	3-1110	4-0110	3-wire	I
				4-wire	L
Low Voltage					t
	120			115	ł
		120/240		115/230	L
1					t
1			208Y/120	200	t
			(Note d)		L
			240/120	230/115	L
		240		230	
			480Y/277	460Y/266	L
		480		460	I
		600		575	I
		(Note e)			L
Medium		2400			T
Voltage			4160Y/2400		L
		4160			I
		4800			I
		6900	83201/4800		I
			120001/6930		I
			12470Y/7200		I
			13200Y/7620		I
			13800Y/7970		I
I		13800			I
			20780y/12000		I
I			228801/13200		I
		23000			I
I			24940Y/14400		I
I			34500Y/19920		I
		34500			I
					L
					ſ
					L
		46000			ſ
		69000			I
					a.,

Standards

Where is 'Medium Voltage'

MV is often classified into the following typical **subclasses**:

Low Medium Voltage (1 kV – 5 kV)

- 1. Common in industrial facilities, commercial buildings, and smaller distribution systems.
- 2. Common voltages: 2.4 kV, 4.16 kV.

Standard Medium Voltage (5 kV – 15 kV)

- Used in industrial power systems, commercial campuses, and primary distribution networks.
- Common voltages: 7.2 kV, 12.47 kV, 13.2 kV, 13.8 kV.

Higher Medium Voltage (15 kV – 35 kV)

- 1. Common in utility distribution networks and larger industrial applications.
- Common voltages: 22.9 kV, 24.94 kV, 25 kV, 34.5 kV.

Upper Medium Voltage (35 kV – 69 kV)

- Used for sub-transmission, long-distance distribution, and interconnection between substations.
- 2. Common voltages: **46 kV, 69 kV**.

Standards

Why Medium Voltage:

	Low Voltage (≤ 600 V)	Medium Voltage (600 V – 35 kV)
Typical ApplicationsOffices, retail, small schools, small commercial buildings		Campuses, hospitals, data centers, industrial facilities
Load Size	< 1–2 MW	> 2–2.5 MW
Cable Run Distance	Short (< 500 ft)	Long (hundreds to thousands of feet)
System Complexity	Simple	More complex
Installation Cost	Lower	Higher (gear, protection, training)
Safety Requirements	Less stringent; general electricians	Requires MV-qualified personnel
Maintenance	Easier; lower risk	Specialized and more stringent
Ideal for Distribution	Small buildings, centralized panels	Large areas with distributed transformers

MV and LV utilize similar but different Design and Construction Standards:

Low-Voltage (LV) Systems

- NEC (NFPA 70)
- **Regulatory** IEEE 141 [Red Book]

Standards

- IEEE 242 [Gray Book]
- National Equipment Manufacturers

Best Practices

- Association (NEMA)
- Underwriters Labs (UL)

- Medium-Voltage (MV) Systems
- NEC (NFPA 70 Over 1000 Volts ac)
- IEEE 1584 (Arc Flash Analysis)
- IEEE C37 Series (Switchgear)
- IEEE C57 Series (Transformers)
- Nationally Recognized Testing Laboratory (NRTL)

Standards

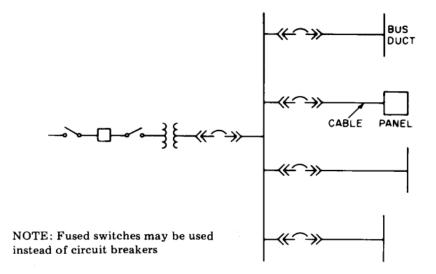
A list of the most common MV architectures you're likely see. We'll describe each a bit more in detail on the following slides:

- Radial System
- Selective System

 Primary
 Secondary
 - Secondary
- Primary Loop
- Ring Bus

This is what we commonly refer to as a Unit Substation (USS) in our market. There is a single primary service and distribution transformer suppling all the feeders/loads.

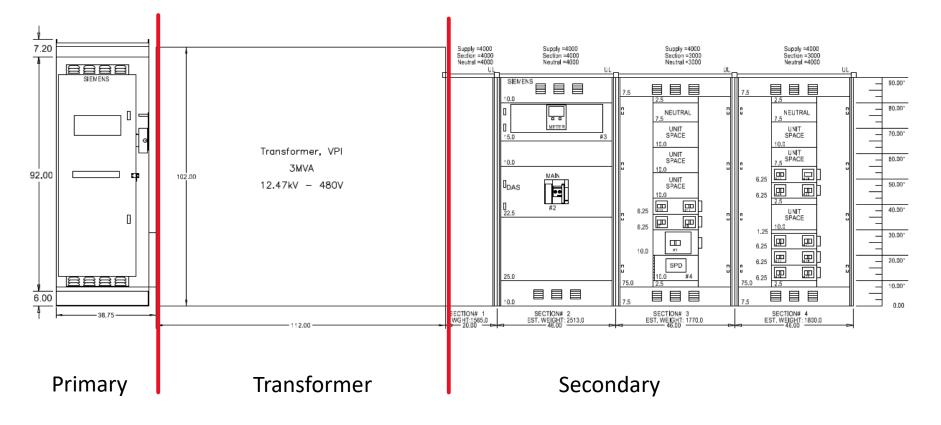
Pro:


- Operation and expansion are simple
- Low cost

Con:

- Susceptible to outages
- Equipment must be shut down for maintenance

Common Uses:


• Buildings where downtime is not critical

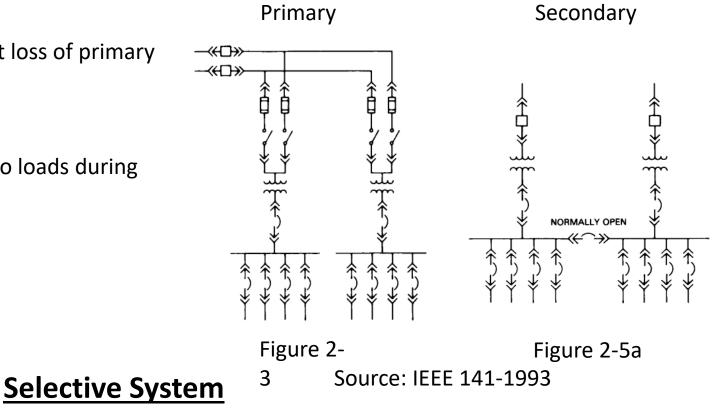
Source: IEEE 141-1993 Figure 2-1

Radial System

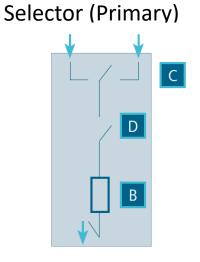
Radial System

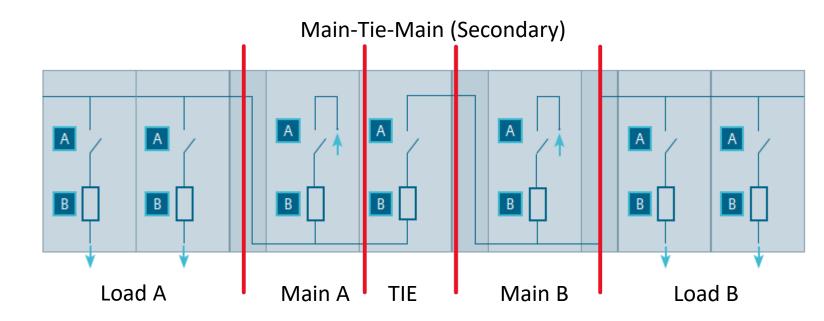
There are two different selective systems; Primary and Secondary. Both provide a redundant source of power to the loads.

Pro:


 Redundancy with protection against loss of primary source

Con:


- Typically, an interruption in power to loads during source transfer
- Moderate Cost

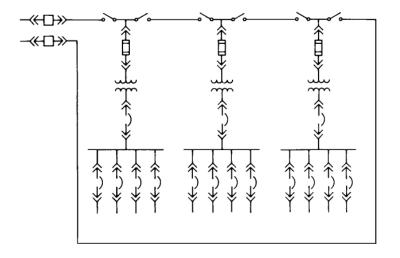

Common Uses:

- Selector Switch (Primary)
- Main-TIE-Main (secondary)

Selective System

Two Primary sources feed the loads in a "loop" configuration. In a 'CLOSED' loop system all the switches shown in Fig. 2-4 will be closed. In an 'OPEN' loop system, one switch will be open; this is essentially mimicking a selective system.

Pro:


- Does not experience loss of power when one of the sources fails.
- Can isolate faults

Con:

- Moderate cost
- Complexity and typically requires a trained staff

Common Uses:

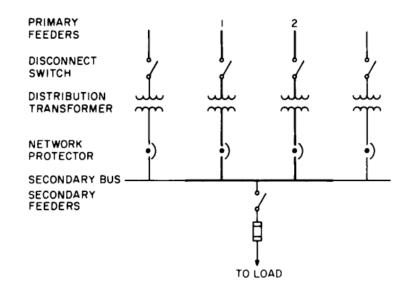
• Campuses, Large Commercial buildings

Source: IEEE 141-1993 Figure 2-4

Primary Loop System

When multiple primary sources are connected in parallel to supply a common load. The Network Protectors will open to prevent back-feeding a failed source. Think of paralleling switchgear.

Pro:


- Most Reliable with minimal downtime
- Excellent for critical loads

Con:

- Very high cost
- Very Complex and should have a trained staff

Common Uses:

• Hospitals, data centers, utility network

Source: IEEE 141-1993 Figure 2-6

Spot Network System

Medium Voltage systems are made up of similar categories of components:

Conductors and Pathways

- **Overhead** cable systems, typically utilizing bare steel-reinforced aluminum conductor.
- **Underground** cable systems, split into direct buried cable and conductors in duct banks.
- In-Building cable systems, primarily conductors in conduit, cables in cable tray or cable bus, and occasionally busway assemblies.

Circuit Protective Devices

- Fuses (multiple curve choices and assemblies).
- Circuit breakers (separation of breakers and protective relaying).

Power Transformers

- Dry-type insulation systems.
- Liquid-filled insulation systems.
- Multiple cooling schemes and temperaturerise ratings.

Equipment

- Pole-mounted.
- Pad-mounted.
- Submersible.

Medium Voltage systems are distributed utilizing various methods of **Conductors and Pathways**:

Cables and Wires

Overhead cable systems, typically utilizing bare steel-reinforced aluminum conductor.

Underground cable systems, split into direct buried cable and conductors in duct banks.

In-Building cable systems, primarily conductors in conduit, cables in cable tray or cable bus, and occasionally busway assemblies.

Overhead cable systems

Bare or Covered Conductors – Usually bare aluminum or ACSR (Aluminum Conductor Steel-Reinforced).

Insulators – To support and insulate conductors on poles.

Crossarms & Poles – Wood, concrete, or steel structures. Typically wood.

Lightning Arresters – Protect against voltage spikes.

Medium Voltage systems are distributed utilizing various methods of **Conductors and Pathways**:

Underground cable systems

MV Power Cables – Often EPR (Ethylene Propylene Rubber [preferred]) or XLPE (cross-linked polyethylene) insulated, armored or unarmored.

Cable Trays/Duct Banks/Conduits – For cable routing and protection.

Splice Boxes / Manholes – For cable joints and installation and maintenance access.

Heat Shrink or Cold Shrink Joints/Terminations – For environmental sealing and insulation.

Grounding/Sheath Bonding – To manage fault currents and minimize interference.

In-Building MV Cable Systems

MV Cables (Fire-rated if needed) – Routed through risers, shafts, or dedicated cable rooms.

Terminations – At switchgear, transformers, or motor control centers.

Switchgear / Switchboards – For control and protection.

Conduits, Trays, or Cable Bus Systems – Depending on layout and fire regulations.

Grounding/Bonding Systems – Critical for personnel safety and equipment protection.

Medium Voltage systems are distributed utilizing various methods of **Conductors and Pathways**:

Underground/In-Building Cable systems

	Low Voltage	Medium Voltage		
Voltage Range	Up to 1 kV	1 kV – 35 kV	OKONITE 7 500 KCMIL COMPACT CU OKOGUARD EP SHLD OKOSE	
Insulation	Single layer	Multi-layer (incl. shields)		
Shielding	Optional	Required		A Uncoated, Okopact (Compact Stranded) Copper Conductor B Strand Screen-Extruded
Conductor Shield	NONE	Semi-conductive layer		Semiconducting EPR C Insulation-Okoguard EPR
Insulation Shield	NONE	Semi-conductive + grounding layer	A Bare, Solid or Stranded Copper Conductor B X-Olene Insulation	 D Insulation Screen-Extruded Semiconducting EPR E Shield-Copper Tape F Jacket-Okoseal
Jacket & Armor	Basic	Often reinforced	B A	
Applications	Building wiring	Utility, industrial, substations	12 AWGCU X-OLENE (XLP) (UL) XHHW-2 600/1000V	

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Dry-type

Thermal Management: Dry-type transformers (IEEE C57.12.01) are limited in kVA due to airbased cooling, which is less efficient.

Typical kVA Ranges: Smaller to medium range, with limitations at the higher end due to thermal constraints (e.g., up to 10,000 kVA for standard applications).

Application Context: often used indoors or in industrial/commercial applications with lower power demands.

Liquid-filled

Thermal Management: Liquid-immersed transformers (IEEE C57.12.00) can handle higher kVA ratings due to better cooling and heat dissipation properties of the liquid medium.

Typical kVA Ranges: Broad range from small to large-scale applications (e.g., 10 kVA to hundreds of MVA for power transformers)..

Application Context: more common in utilities and outdoor environments with higher power needs.

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Medium Voltage systems are distributed utilizing various methods of **Circuit Protective Devices**:

	Low Voltage (LV) Fuses	Medium Voltage (MV) Fuses
Voltage Range	≤ 1000 V AC (typically up to 600 V in UL applications)	> 1000 V to ~38 kV (per ANSI/IEEE)
Standards	UL 248-x (series of fuse standards)	ANSI C37.41, C37.42, C37.46, C37.47
Common Classes	Class H, K, R, J, T, CC, G, L	E-rated and R-rated (current-limiting); expulsion fuses (non-current-limiting)
Protection Type	Overload + short-circuit (varies by class)	Short-circuit protection only; overload handled by relays
Construction	Cartridge, blade, or ferrule-type	Current-limiting or expulsion, often enclosed or clip- mounted
Time-Current Characteristic	Fast-blow and time-delay available	Time-delay (E-rated) or motor-optimized (R-rated)

Medium Voltage systems are distributed utilizing various methods of **Circuit Protective Devices**:

	LV Breakers (UL/ANSI C37.13)	MV Breakers (ANSI C37.04/06/09)
Voltage Class	≤ 1kV	1kV–38kV (common), up to 69kV
UL Standard	UL 489 (MCCBs)/ UL 1066 (ACBs) ANSI C37.13 (ACBs)	ANSI C37.04 (general requirements), C37.06 (ratings), C37.09 (testing), C37.20.2 (metal-clad switchgear)
Protection	Built-in trip units - Thermal-magnetic, electronic (LSIG functions)	External protective relays - Controlled by protective relays (ANSI 50/51, 27, 59, etc.)
Interruption Medium	Air	Vacuum (common), SF ₆ (or Green Gas), Air Blast
Energy Containment	Breakers rely on external barriers and chutes to contain arc safely	Arc is fully contained in interrupter (sealed vacuum bottle or gas tank) – safer for higher voltages
Coordination Fully and selectively coordinated via series ratings (UL 489)		Relay curves and zone protection via Time-current coordination via protective relay settings
MonitoringTrip unit diagnostics (LSIG, waveform capture)		Integrated SCADA, protective relays, condition monitoring

Medium-Voltage Switchgear

1. Physical Installation

- Subsurface (Submersible), Vault, Padmount, Metal-Clad and Metal-Enclosed
 - a. Indoor or Outdoor
 - b. Above or Below Grade
 - c. Cable Entry & Connections Above or Below, Live Front or Dead Front
 - d. Tamper Resistant Prevent unauthorized access

Switchgear Type	Indoor	Outdoor	Above or Below Grade	Cable Termination Style	Above or Below Cable Entry
Metal-Enclosed Switchgear	x	x	Above	Live Front ¹	Both
Metal-Enclosed Gas Insulated Switchgear	x		Above	Live Front ²	Below
Metal-Clad Switchgear	x	x ³	Above	Live Front	Both
Padmount Switchgear		x	Above	Dead Front	Below
Subsurface (Submersible) Switchgear	x	x	Below	Dead Front	Below
Vault Switchgear	x		Above or Below	Dead Front	Below

Notes:

- Traditional Metal-Enclosed Switchgear is Live Front Connections Only and Some Metal-Enclosed Switchgear includes Live Front or Dead Front Connection options.
- 2) Metal-Enclosed Gas Insulated Switchgear cable connections typically require a minimum of a 36.5" H vault beneath the gear.
- 3) Metal-Clad Switchgear includes Aisleless and Walkin Outdoor Construction.

2. Insulating Mediums

Insulating material used for insulating energized parts from the structure ground

Types – Air, Fluid, Gas, & Solid Dielectric

- Air Air is a readily available, most common and least expensive. Disadvantage is lower dielectric strength compared to others requiring larger equipment.
- Fluid Provides both insulation and cooling, making it ideal for high-power applications. Requires maintenance and monitoring for contamination and degradation. Fluid types include Mineral Oil, E200 and FR3.
- **Gas** Used as a primary insulation between live electrical components and the grounded metal enclosure. Historically SF6 was the gas utilized; however, many equipment suppliers are considering NOG (natural origin gas) alternatives as a replacement for SF6 for the future.
- Solid Dielectric Consists of polymeric dielectric materials used as an encapsulated material for live parts. The combination of nonconductive materials with air gaps provide low dielectric losses, high mechanical strength and resistance to thermal and chemical deterioration of the switchgear.

3. Switch/Interrupter Types

Padmount/Subsurface/Vault Terms

- Switched Way Way with three phase group operated or singlephase switch used for open/close operation
- Protected Way Way with Interrupter Device

Switch Types

- Switch in Air, Fluid, Gas or Vacuum
- Breaker in Air or Vacuum

Interrupting Device

- Fuses (Current-Limiting and Expulsion)
- Breaker with Protective Relay
- VFI (Vacuum Fault Interrupter) with Protective Relay

	Switching Type (Open/Close Operation)				Interrupter Device (Overcurrent Protection)			
Switchgear Type	Switch (Air)	Switch (Vacuum)	Switch (Fluid)	Breaker (Vacuum)	Switch w/ Fuses	, VFI w/ Protectiv e Relay	Breaker w/ Integral Trip Unit	Breaker w/ Protective Relay
Metal-Enclosed Switchgear	x			x	x	x	x	x
Metal-Enclosed Gas- Insulated Switchgear				x				x
Metal-Clad Switchgear				x				x
Padmount Switchgear		x	x	x	x	x		x
Subsurface (Submersible) Switchgear		x		x		x		x
Vault Switchgear		x		x		x		x

4. Current and Voltage Ratings

- Continuous Current 200A up to 4000A
- Voltage
 - IEEE Medium Voltage Range 1 kV to 69 kV
 - Medium Voltage Classes 5kV, 15kV, 27kV and 38kV
 - □ Basic Insulation Level (BIL) Range is 60 kV to 250 kV
- Short Circuit Current Ratings
 - Short Time Withstand Current Rating One or two or 2 second symmetrical current (Subsurface/Vault/Padmount Switchgear is 1 sec. & Metal-Enclosed and Metal-Clad Switchgear is 2 sec.)
 - □ Short Circuit Current 10 kA up to 63 kA symmetrical
 - Momentary Withstand Current Rating 10-cycle asymmetrical peak current
 Momentary Withstand Current Rating 16-101 kA asymmetrical

5. Standards

- 3rd party certifications
 - UL, CSA, IBC/CBC, OSHPD
- Design Standards
 - ANSI / IEEE, IEC, NEMA

Table 3. Standard Nominal System Voltages and Voltage Ranges (From IEEE Standard 141-1993)

Voltage	Nominal Syst	tem Voltage	
Class	Three-Wire	Four-Wire	
Low	240/120	208Y/120	
voltage	240	240/120	
	480	480Y/277	
	600	-	
Medium	2400	4160Y/2400	
oltage	4160	8320Y/4800	
	4800	12000Y/6930	
	6900	12470Y/7200	
	13,200	13200Y/7620	
	13,800	13800Y/7970	
	23,000	20780Y/12000	
	34,500	22860Y/13200	
	46,000	24940Y/14400	
	69,000	34500Y/19920	
ligh	115,000		
oltage	138,000		
	161,000	-	
	230,000	-	
xtra-high	345,000	-	
oltage	500,000	-	
	765,000	-	
Jltra-high /oltage	1,100,000	-	

Major equipment categories

- Metal-clad switchgear
- Metal-enclosed switchgear
- MEGIS (metal-enclosed gas-insulated switchgear)
- Underground switchgear
 - Padmount
 - Vault
 - Subsurface
 - VFI transformers

•

Design standards

Feature	IEEE C37.20.2 – 2022 (Metal-Clad)	IEEE C37.20.3 – 2023 (Metal-Enclosed)	IEEE C37.20.9 – 2019 (MEGIS)	IEEE C37.74-2014 IEEE C37.62-2020* (Vault/Padmount SWGR)
Continuous Current Rating	1200A, 2000A, 3000A, 4000A	600A, 1200A, 2000A, 3000A, & 4000A	200A, 600A, 1200A, 2000A, 2500A, 3000A, and 4000A	200A, 400A, 600A
Voltage	1kV-48.3kV	1 kV to 48.3 kV	1 kV to 52 kV	1 kV to 38 kV
Short Time Withstand	16-63kA, rms sym	12.5-63kA, rms sym	12.5 kA – 63 kA, rms sym	10 kA – 38 kA, rms sym
BIL Ratings	60 kV - 250 kV	60 kV – 250 kV	60 kV – 250 kV	95 kV – 150 kV
Ambient Temp. Requirement	-30°C to 40°C	-30°C to 40°C	-5°C to 40°C	-30°C to 40°C
Altitude	3300 ft and under	3300 ft and under	3281 ft and under	3281 ft and under

MV switchgear types

	Pad-mount Air or liquid	Pad-mount Vacuum interrupters	VFI SWGR	Solid Dielectric	Padmount Metal Enclosed	VFI XFMR	Metal-Enclosed	Metal Clad	Compact Switchgear
		a s							
Voltage Class	15-38 kV	15-38 kV	15-38 kV	15-27 kV	15-38 kV	15-38 kV	5-38 kV	5-38 kV	5-38 kV
IEEE Standard	C37.74	C37.74	C37.74, C37.62	C37.74, C37.62		C57.12.00, C37.62	C37.20.3	C37.20.2	C37.20.9
Relative Cost	\$	\$	\$	\$	\$\$	\$\$\$	\$\$\$	\$\$\$	\$\$\$

QUESTIONS?

Presentation will be available online at electricleague.net/presentations On May 15, the Electric League is presenting a follow-up MV session. Please share your notes about what you want to learn at the May session

Thank you for joining us today!

Presentation will be available online at electricleague.net/presentations

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Cooling Systems for Liquid-filled Transformers

Transformers generate heat during operation. Proper cooling systems are essential to maintain optimal temperature levels and prevent damage.

Natural Cooling (ONAN)

Function: Relies on natural convection to circulate oil and air for cooling.

Application: Smaller or low-rating transformers.

Forced Air Cooling (ONAF)

Function: Fans force air over the cooling fins or radiators to enhance heat dissipation.

Application: Medium to large transformers with higher load requirements.

Cooling Systems for Liquid-filled Transformers

Forced Oil and Air Cooling (OFAF)

Function: Oil pumps circulate the insulating oil, while fans cool the oil in radiators.

Application: High-capacity transformers with significant cooling needs.

Oil to Water Cooling (OFWF)

Function: Heat exchangers transfer heat from oil to a water-cooling system.

Application: Transformers in environments where water cooling is more effective.

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Cooling Systems for Liquid-filled Transformers

Radiators with Fans

Function: Radiators equipped with fans increase heat dissipation.

Application: Enhances cooling performance for both natural and forced systems.

Monitoring and Control Systems Sensors:

- •Temperature gauges for oil and winding.
- •Pressure relief devices for oil expansion. **Control**:

•Automatic activation of fans or pumps based on temperature thresholds.

Temperature-Rise for Liquid-filled Transformers

Temperature rise rating of a transformer is a key spec that tells you how hot the windings are allowed to get above ambient temperature during full load operation.

Temperature rise rating is the difference between the ambient temperature and the average or hottest winding temperature when the transformer is operating at rated load. If the ambient is 30°C (standard for rating), and the transformer has a 65°C rise, the winding temp may reach 95°C.

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Temperature-Rise for Liquid-filled Transformers

Typical temperature rises:

55°C - More conservative, often used for longer life.
65°C - Standard for many substation transformers.
55/65°C - Can be operated at either level.

Mode	Cooling	Temp Rise	Rating	Notes
Normal	ONAN	55°C	2500 kVA	Standard continuous
Boost	ONAF	55°C	2800 kVA	Higher output with fans, same insulation stress
Heavy Load	ONAN	65°C	2750 kVA	Accept higher temp rise
Max Load	ONAF	65°C	3000 kVA	Full output capacity

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Cooling Affects for Liquid-filled Transformers & Fault-Current Implications

Not significantly. Here's why:

%Z is fixed — it doesn't change with cooling or temp rise.

The **transformer's physical design** (winding size, spacing, core) determines %Z and short-circuit strength.

But in real-life **protection studies**, engineers typically:

•Use the **ONAN rating** for conservative fault calcs, or

•Use **maximum ONAF rating** if the transformer will regularly run in forced-cooled mode.

• cooling or temp rise.

Parameter	Affects Fault Current?	Notes		
%Z Impedance		Direct influence		
KVA Rating	🔽 (based on base current used)	Use max kVA if you want highest fault level		
Cooling Mode (ONAN/ONAF)	X	Impacts long-term load, not fault level		
Temperature Rise (55/65°C)	X	Affects insulation/life, not fault level		
Components				

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Liquid-filled power transformers use insulating and cooling fluids to:

Insulate internal components like windings and cores.Cool the transformer by transferring heat away from internal parts.Protect against oxidation and moisture.

Fluid Type	Environmental Impact	Common Use Cases	Standards
Mineral Oil	Not biodegradable, flammable	Outdoor utility and industrial transformers	ASTM D3487
Natural Esters	Biodegradable, eco-friendly Envirotemp FR3	Urban, indoor, or environmentally sensitive sites	IEEE C57.147
Silicone Fluids	Low toxicity, not biodegradable Dow Corning 561	Indoor substations, tunnels, confined spaces	ASTM D4652

Medium Voltage systems are distributed utilizing various methods of **Power Transformers**:

Cooling Systems for Dry-type Transformers

Thermal Management: Dry-type transformers are limited in kVA due to air-based cooling, which is less efficient.

Typical kVA Ranges: Smaller to medium range, with limitations at the higher end due to thermal constraints (e.g., up to 10,000 kVA for standard applications).

Application Context: often used indoors or in industrial/commercial applications with lower power demands.

IEEE C57.12.01 – Cooling Class Designations

Code	Description
AA	Air-cooled by natural convection, ambient air only (no fans).
AF	Air Forced — ambient air is circulated using fans.
AA/FA	Transformer operates under natural cooling (AA) but has fans for forced air cooling (FA) as an optional/boost mode.

